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Let K be an arbitrary field of any characteristic and let Mn(K) be the
algebra of n× n matrices with entries from K. Let also
K〈X〉 = K〈x1, x2, . . .〉 be the free unitary associative algebra freely
generated by the set X = {x1, x2, . . .}, i.e. the algebra of polynomials in
infinitely many noncommuting variables.

Amitsur-Levitzki theorem

The matrix algebra Mn(K) satisfies the standard identity of degree 2n

s2n =
∑
σ∈S2n

sign(σ)xσ(1) · · ·xσ(2n) = 0,

where S2n is the symmetric group of degree 2n. With exception of the
case n ≤ 2 and K = GF2, up to a multiplicative constant this is the only
polynomial identity of minimal degree for the matrix algebra. In the
exceptional case Mn(GF2), n ≤ 2, satisfies a nonlinear identity of the
same minimal degree 2n.
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The Amitsur-Levitzki theorem is one of the most famous theorems and a
corner stone in the theory of algebras with polynomial identity
(PI-algebras). It has several proofs based on different arguments.
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The purpose of the talk is to discuss the proofs of the Amitsur-Levitzki
theorem, to give some of them and to present some consequences of the
theorem.

The talk is based also on the books

V. Drensky, Free Algebras and PI-Algebras, Springer-Verlag,
Singapore, 2000.

V. Drensky, E. Formanek, Polynomial Identity Rings, Advanced
Courses in Mathematics, CRM Barcelona, Birkhäuser, Basel-Boston,
2004.

and the papers

Amitsur-Levitzki theorem, in Encyclopedia of Mathematics and
Wikipedia
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The proof of Amitsur and Levitzki

The original proof of the theorem uses the following facts:

Since the standard polynomial s2n(x1, . . . , x2n) is linear in each
argument, it is sufficient to show that it vanishes when we replace the
variables with the matrix units eij , i, j = 1, . . . , n.

Since s2n(x1, . . . , x2n) is skew symmetric, i.e.

s2n(xτ(1), . . . , xτ(2n)) = sign(τ)s2n(x1, . . . , x2n), τ ∈ S2n,

it vanishes when two of the arguments are equal.
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It is based on inductive combinatorial arguments. With some technical
improvements it can be found for example in the book by Passmann (p.
175).

D.S. Passman, The Algebraic Structure of Group Rings,
Wiley-Interscience, New York, 1977.

Proof of the uniqueness. In 1950 Levitzki proved that the identity of
minimal degree for Mn(K) is of degree ≥ 2n. His proof is a consequence
of more complicated results on PI-algebras. See Consequence 2 in his
paper.

J. Levitzki, A theorem on polynomial identities, Proc. Am. Math.
Soc. 1 (1950), 334-341.
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It is known that if an algebra R satisfies a polynomial identity of degree d,
then it satisfies a multilinear polynomial identity of degree d. Here we give
a direct proof of the uniqueness in the case of multilinear identities. Let
Mn(K) satisfy the multilinear identity of degree d ≤ 2n

f(x1, . . . , xd) =
∑
σ∈Sd

aσxσ(1) · · ·xσ(d) = 0, aσ ∈ K.

First, let d < 2n. Let for example aε 6= 0, where ε is the identical
permutation of Sd. (The cases for the other aσ are handled in a similar
way.) We replace x1, x2, x3, x4, . . . , xd by the matrix units
r1 = e11, r2 =12, r3 =22, r4 = e23, etc. The only nonzero product is
r1r2 · · · rd = e1k. Hence f(r1, . . . , rd) = aεe1k 6= 0 and the case d < 2n is
impossible.
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Now, let d = 2n and

f(x1, . . . , x2n) =
∑
σ∈S2n

aσxσ(1) · · ·xσ(2n).

We evaluate f on

r1 = r2 = e11, r3 = e12, r4 = e22, r5 = e23, . . . , r2n−1 = en−1,n, r2n = enn.

Then F (r1, . . . , r2n) = (aε + a(12))e1n = 0. Hence a(12) = −aε. With
similar arguments we obtain that if σ and τ are two permutations such
that σ(i) = τ(i) for all i different from k and k + 1 and σ(k) = τ(k + 1),
σ(k + 1) = τ(k), then aτ = −aσ. Since every permutation σ can be
obtained from the identical by consecutive exchanging the places of the
numbers at two adjacent positions, we obtain that aσ = sign(σ)aε and

f(x1, . . . , x2n) = aεs2n(x1, . . . , x2n).
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Now, let K = GF2 be the field with two elements.

It is well known that M1(GF2) = GF2 satisfies the identity
x2 + x = 0.

The algebra M2(GF2) satisfies the identity

f(x, y) = xy3 + yxy2 + y2xy + y3x+ xy2 + y2x = 0.
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Proof. Over GF2 there are four quadratic polynomials only:

x2, x2 + 1, x2 + x, x2 + x+ 1.

By the Cayley-Hamilton theorem for every matrix a ∈M2(GF2) one of the
following holds:

a2 = 0, a2 = e, a2 = a, a2 = a+ e.

Let a2 = αa+ βe, α, β ∈ GF2. Since α2 = α, we obtain

a3 = a(αa+ βe) = α(αa+ βe) + βa = (α+ β)a+ βe.

Replacing a3 and a2 in f(x, a) we obtain immediately f(x, a) = 0, i.e.
f(x, y) = 0 is an identity for M2(GF2).
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The proof of Kostant

The proof is cohomological and depends upon the Frobenius theory of
representations of the alternating group. The paper by Kostant was also
the first to relate the polynomial identities satisfied by matrices with
traces, a theme which was later developed by Procesi and Razmyslov and
influenced much research.

It is interesting to mention that all of the proofs of the Amitsur-Levitzki
theorem except the original combinatorial proof and the graph theoretical
proofs of Swan and of Szigeti, Tuza and Révész depend on the
Cayley-Hamilton Theorem.
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The proof of Swan

The main idea of the proof is to define a correspondence between any set
of matrix units eij (allowing repetitions) and an oriented graph (allowing
loops and several edges with the same beginning and end) with a set of
vertices {1, 2, . . . , n} and edges (ij) for any eij .

The graph in the picture corresponds to the set of matrix units
{e12, e14, e14, e22, e23} and the path 1→ 2→ 2→ 2→ 3 illustrates the
product e12e22e22e23 = e13.
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Let Γ be an oriented graph with sets of vertices {1, 2, . . . , n} and edges
{e1, e2, . . . , ek}. Let σ ∈ Sk. If (eσ(1), eσ(2), . . . , eσ(k)) is a path, it is
called a unicursal path from the origin of eσ(1) to the end of eσ(k).
Depending on the parity of σ, the path may be either even or odd. The
idea of the proof of Swan is based on the following observation.
If ei1j1 , . . . , ei2n,j2n ∈Mn(K) are matrix units, and e1, . . . , e2n are the
edges of the corresponding oriented graph, then

s2n(ei1j1 , . . . , ei2nj2n) =

n∑
i,j=1

(a
(+)
ij − a

(−)
ij )eij ,

where a
(+)
ij and a

(−)
ij are, respectively, the number of even and odd

unicursal paths from i to j.
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The main result in graph theory which immediately implies the
Amitsur-Levitzki theorem is the following.
Theorem. Let Γ be an oriented graph with a set of vertices V and a set
of edges E. If |E| ≥ 2|V |, then for any two vertices v1 and v2 the number
of even unicursal paths from v1 to v2 is equal to the number of odd
unicursal paths.

If the matrix units are e11, e12, e22, e23, e33, e31 and the corresponding
vertices of the graph are e1, e2, e3, e4, e5, e6, then all unicursal paths from
2 to 2 are (e3, e4, e5, e6, e1, e2) which is even and (e4, e5, e6, e1, e2, e3)
which is odd.
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The proof of Razmyslov

Lemma. The validity of the Amitsur-Levitzki theorem for Mn(Q) implies
its validity for Mn(K) over any field K.

Proof. If rp =
n∑

i,j=1

α
(p)
ij eij , α

(p)
ij ∈ K, p = 1, . . . , 2n, are matrices in

Mn(K), then s2n(r1, . . . , r2n) is a linear combination of
s2n(ei1j1 , . . . , ei2nj2n) and is equal to 0 because we have assumed that the
theorem holds for Mn(Z) ⊂Mn(Q).
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Lemma. Let the eigenvalues of the matrix a ∈Mn(K) be equal to
ξ1, . . . , ξn and let eq(ξ1, . . . , ξn) be the q-th elementary symmetric
polynomial in ξ1, . . . , ξn. Then

an +

n∑
q=1

(−1)qeq(ξ1, . . . , ξn)an−q = 0,

tr(aq) = ξq1 + · · ·+ ξqn.
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Proof. The characteristic polynomial f(λ) = det(λe− a) of a is the same
as for its Jordan normal form

ξ1 ∗ · · · ∗
0 ξ2 · · · ∗
...

...
. . .

...
0 0 · · · χn

 .

Hence

f(λ) =

n∏
i=1

(λ− ξi) = λn +

n∑
q=1

(−1)qeq(ξ1, . . . , ξn)λn−q

Now the proof follows from the Cayley-Hamilton theorem applied to the
matrix a.
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The proof of Razmyslov of the Amitsur-Levitzki theorem. We give
the proof for 2× 2 matrices. The general case is similar with additional
technical difficulties only. By one of the lemmas we assume that K = Q.
Let

pq(ξ1, . . . , ξn) = ξq1 + . . .+ ξqn.

The Newton formulas give that for q ≤ n

pq − e1pq−1 + e2pq−2 + . . .+ (−1)q−1eq−1p1 + (−1)qqeq = 0.

We can express eq(ξ1, . . . , ξn) as polynomials of pq(ξ1, . . . , ξn). In our case

e2(ξ1, ξ2) = ξ1ξ2 =
1

2
((ξ1 + ξ2)2 − (ξ2

1 + ξ2
2)) =

1

2
(p2

1(ξ1, ξ2)− p2(ξ1, ξ2)).
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By the other lemma, for any 2× 2 matrix a with eigenvalues ξ1, ξ2

a2 − e1(ξ1, ξ2)a+ e2(ξ1, ξ2)e = 0,

a2 − p1(ξ1, ξ2)a+
1

2
(p2

1(ξ1, ξ2)− p2(ξ1, ξ2))e = 0,

a2 − tr(a)a+
1

2
(tr2(a)− tr(a2))e = 0.

Hence

f(x) = x2 − tr(x)x+
1

2
(tr2(x)− tr(x2))e = 0

is a trace polynomial identity for M2(K).
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We linearize this trace identity (i.e. obtain the consequence
f(y1 + y2)− f(y1)− f(y2)):

(y1y2 + y2y1)− (tr(y1)y2 + tr(y2)y1)

+
1

2
((tr(y1)tr(y2) + tr(y2)tr(y1))− tr(y1y2 + y2y1))e = 0.

Since
tr(y1)tr(y2) = tr(y2)tr(y1), tr(y1y2) = tr(y2y1),

we see that M2(K) satisfies the multilinear trace identity

g(y1, y2) = (y1y2 + y2y1)− (tr(y1)y2 + tr(y2)y1)

+(tr(y1)tr(y2)− tr(y1y2))e = 0.
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Now we replace y1 and y2 respectively by xσ(1)xσ(2) and xσ(3)xσ(4) and
take the alternating sum on σ ∈ S4:

0 =
∑
σ∈S4

sign(σ)f(xσ(1)xσ(2), xσ(3)xσ(4))

= 2
∑
σ∈S4

sign(σ)(xσ(1)xσ(2)xσ(3)xσ(4) − tr(xσ(1)xσ(2))xσ(3)xσ(4))

+
∑
σ∈S4

sign(σ)(tr(xσ(1)xσ(2))tr(xσ(3)xσ(4))− tr(xσ(1)xσ(2)xσ(3)xσ(4))e).
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The trace is invariant under cyclic permutations, hence

tr(xσ(1)xσ(2)) = tr(xσ(2)xσ(1)),

tr(xσ(1)xσ(2)xσ(3)xσ(4)) = tr(xσ(2)xσ(3)xσ(4)xσ(1)).

The permutations in each of the pairs

(σ(1), σ(2), σ(3), σ(4)) and (σ(2), σ(1), σ(3), σ(4)),

(σ(1), σ(2), σ(3), σ(4)) and (σ(2), σ(3), σ(4), σ(1))

are of different parity and the summands containing traces vanish in∑
σ∈S4

sign(σ)g(xσ(1)xσ(2), xσ(3)xσ(4)) = 0.
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Therefore, we obtain that

2s4 = 2
∑
σ∈S4

(signσ)xσ(1)xσ(2)xσ(3)xσ(4) = 0,

and this completes the proof.
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The proof of Rosset

For the proof of Rosset we need some knowledge about the exterior (or the
Grassmann) algebra E(V ), where V is a vector space with basis
{vi | i = 1, 2, . . .}. It is the associative algebra generated by the basis of V
with defining relations

vivj + vjvi = 0, v2
i = 0, i, j = 1, 2, . . . .

Then E(V ) has a basis

{vi1 · · · vik | i1 < · · · < ik, k = 0, 1, 2, . . .}

and the elements vi1 · · · vik of even length span the center of E(V ).

In a similar way one defines the Grassmann algebra E(Vm) when Vm is an
m-dimensional vector space.
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Lemma.

Let K be a field of characteristic 0 and let for the matrix a ∈Mn(K)

tr(ak) = 0, k = 1, 2, . . . , n.

Then an = 0.
Proof. As in the proof of Razmyslov, if ξ1, . . . , ξn are the eigenvalues of
the matrix a, then

an +

n∑
q=1

(−1)qeq(ξ1, . . . , ξn)an−q = 0.

By the Newton formulas we can express eq(ξ1, . . . , ξn) in terms of

pk(ξ1, . . . , ξn) = ξk1 + . . .+ ξkn, k = 1, . . . , q,

i.e. in terms of tr(ak), k = 1, . . . , q. Since all tr(ak) = 0, we obtain that
an = 0.
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Lemma.

Let C be a commutative ring. Then for any a1, . . . , a2k ∈Mn(C)

tr(s2k(a1, . . . , a2k)) = 0.

Proof. By definition s2k(a1, . . . , a2k) is a sum of products
±aσ(1) · · · aσ(2k), σ ∈ S2k. We subdivide these products in groups
obtained by cyclic permutations of a given product. Then all of the
monomials in one group have the same trace, but half have a plus sign and
half have a minus sign. Hence tr(s2k(a1, . . . , a2k)) = 0.
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The proof of Rosset of the Amitsur-Levitzki theorem. As we have
seen, it is sufficient to prove the theorem when K is a field of
characteristic 0. Let V2n be a 2n-dimensional vector space with basis
{v1, . . . , v2n} and let E(V2n) be the Grassmann algebra on V2n. Then the
algebra D generated by the products vivj , 1 ≤ i < j ≤ 2n, is
commutative. Consider the matrix algebra Mn(E(V2n)) with entries from
E(V2n). For any a1, . . . , a2n ∈Mn(K) let b = a1v1 + · · ·+ a2nv2n. Then

c = b2 =
∑

1≤i<j≤2n

(aiaj − ajai)vivj ∈Mn(D),

and
ck = b2k =

∑
s2k(ai1 , . . . , ai2k)vi1 · · · vi2k .

Since c belongs to the matrix algebra Mn(D) with entries from the
commutative ring D and by the lemma for tr(s2k), we obtain that
tr(c) = tr(c2) = · · · = tr(cn) and hence cn = 0. But
cn = s2n(a1, . . . , a2n)v1 · · · v2n and hence s2n(a1, . . . , a2n) = 0.
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The proof of Szigeti, Tuza and Révész

Szigeti, Tuza and Révész consider an oriented connected graph Γ with a
vertex set {1, . . . , k} and an edge set {e1, . . . , eN} (allowing several edges
with the same beginning and end), where each vertex i is a beginning of
φ+(i) and end of φ−(i) edges. They fix two vertices p and q (it is allowed
p = q) and call the graph Γ Eulerian if one of the following holds:

p = q and φ+(i)− φ−(i) = 0 for all i = 1, . . . , k;

p 6= q and φ+(i)− φ−(i) =


0, if i 6= p, q;

1, if i = p;

−1, if i = q.
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Let Π(Γ) ⊂ Sn be the set of all permutations corresponding to paths
(eσ(1), . . . , eσ(n)) of Γ from p to q. As in the proof of Swan such paths are
unicursal.

A well known theorem in graph theory states:
Theorem. If Γ is a connected oriented Eulerian graph with fixed points p
and q, then there is a unicursal path from p to q.

The idea of Szigeti, Tuza and Révész is to paraphrase the theorem of
Swan:
Theorem. Let Γ be an oriented graph with a set of vertices V and a set
of edges E. If |E| ≥ 2|V |, then for any two vertices v1 and v2 the number
of even unicursal paths from v1 to v2 is equal to the number of odd
unicursal paths.
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p = 1, q = 2. The paths are

even: (e1, e3, e9, e6, e8, e5, e4, e7, e2), (e1, e3, e8, e6, e9, e5, e7, e4, e2),

odd: (e1, e3, e8, e6, e9, e5, e4, e7, e2), (e1, e3, e8, e6, e9, e5, e4, e7, e2).
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Let Γ be an Eulerian graph with vertices {1, . . . , k} and edges
{e1, . . . , eN}. Define

γ(i) =

{
φ+(i), if i 6= q;

φ−(i), if i = q.
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γ(1) = 1, γ(2) = γ(3) = γ(4) = 2, γ(5) = 3.
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The theorem of Szigeti, Tuza and Révész. Let Γ be an Eulerian graph
with k vertices and N edges. If n ≥ 1 is such that

N ≥ 2
k∑
i=1

min{n, γ(i)},

then
PΓ(x1, . . . , xN ) =

∑
σ∈Π(Γ)

sign(σ)xσ(1) · · ·xσ(N) = 0

is a polynomial identity for Mn(K).
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Corollary. Let Γ be an Eulerian graph with k vertices and N edges. If
n ≥ 1 is such that N ≥ 2kn, then PΓ(x1, . . . , xN ) = 0 is a polynomial
identity for Mn(K).
Proof. Since n ≥ min{n, γ(i)}, we obtain that

N ≥ 2nk ≥ 2
k∑
i=1

min{n, γ(i)}

and the corollary follows immediately from the theorem.
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Special case — the standard identity:

k = 1, N = 2n, Π(Γ) = S2n

PΓ(x1, . . . , x2n) = s2n(x1, . . . , x2n) = 0.
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The proof of Procesi

Procesi shows that the Amitsur-Levitzki theorem is the Cayley-Hamilton
theorem for the generic Grassmann matrix. Techinally, the proof is very
similar to the proof of Rosset but while in the proof of Rosset the
Grassmann variables are auxiliary, in the proof of Procesi these variables are
intrinsically embedded in the problem; this is important for applications.
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One of the main problems for the polynomial identities for matrices

Problem. Over a field K of characteristic 0 find a basis for the
polynomial identities of Mn(K).
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Known answers

n = 1 (trivial answer). All identities follow from

[x1, x2] = x1x2 − x2x1 = 0.

n = 2. Razmyslov: All polynomial identities for M2(K) follow from
the standard identity s4(x1, x2, x3, x4) = 0 and the identities of
degree 5.
Drensky: The polynomial identities for M2(K) follow from

s4(x1, x2, x3, x4) = [[x1, x2]2, x1] = 0.

n ≥ 3. Kemer: The polynomial identities for any associative algebra
follow from a finite number.
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Other polynomial identities for matrices.
The identity of algebraicity

The identity of algebraicity

an(x1, . . . , xn, y) =
∑

σ∈Sn+1

sign(σ)yσ(0)x1y
σ(1)x2y

σ(2) · · ·xnyσ(n) = 0

is a polynomial identity for Mn(K). For n > 1 it does not follow from the
standard identity s2n(x1, . . . , x2n) = 0. Here Sn+1 acts on the set
{0, 1, . . . , n}.
Proof. Consider the Capelli identity

cn+1(y0, y1, . . . , yn;x1, . . . , xn) =
∑

σ∈Sn+1

sign(σ)yσ(0)x1yσ(1) · · · · · ·xnyσ(n).

It vanishes when y0, y1, . . . , yn are linearly dependent. Replace yi by yi

and apply the Cayley-Hamilton theorem.
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Let n > 1 and let an = 0 follow from s2n = 0. Then the same holds for

bn(x, y) = an(x, . . . , x, 1, y) =
∑

σ∈Sn+1

sign(σ)yσ(0)xyσ(1) · · · · · ·xyσ(n).

Hence
bn(x, y) =

∑
αiuis2n(vi1, . . . , vi,2n)wi,

where ui, vij , wi are monomials in x and y and

degx(ui) +

2n∑
j=1

degx(vij) + degx(wi) = n,

degy(ui) +

2n∑
j=1

degy(vij) + degy(wi) = 1 + 2 + · · ·+ n.
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It holds s2n(1, x2, . . . , x2n) = 0. (For the proof, we write s2n(x1, . . . , x2n)
as a sum of products of commutators

sign(σ)

2n
[xσ(1), xσ(2)] · · · [xσ(2n−1), xσ(2n)].)

Hence, the only possibility is

ui = wi = 1, v1 = · · · = vn = x, vn+1 = y, vn+2 = y2, . . . , v2n = yn

and this is impossible because n ≥ 2 and v1 = v2, i.e. the evaluation of
s2n is equal to 0.
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Conjecture. If char(K) = 0, then for n ≥ 2 the polynomial identities of
Mn(K) follow from the standard identity s2n = 0 and the identity of
algebraicity an(x1, . . . , xn, y) = 0.

True for n = 2, because [[x, y]2, y] = a2(x, y).

Not true for n = 3. Okhitin and Domokos found identities of degree 9
which do not follow from s6 = a3 = 0.

S.V. Okhitin, On varieties defined by two-variables identities
(Russian), Moscow State Univ. (Manuscript deposited in VINITI
12.02.1986, No. 1016-V). Ref. Zh. Mat. 6A366DEP./1986.

M. Domokos, New identities for 3× 3 matrices, Lin. Multilin. Algebra
38 (1995), 207-213.
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The double Capelli identity

Problem. (Formanek) Let

dk(X,Y ) =
∑

σ,τ∈Sk

sign(στ)xσ(1)yτ(1) · · ·xσ(k)yτ(k) = 0

be the double Capelli identity. Does it follow from the standard identity
sk(X) = 0?

The answer into affirmative was given by Chan.

Giambruno and Sehgal showed that d2n(X,Y ) = 0 is a polynomial
identity for Mn(K).

Szigeti, Tuza and Révész deduced this from their graph theoretical
approach.

Domokos found an easy proof using the Amitsur-Levitzki theorem.
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The proof of Szigeti, Tuza and Révész

k = 2, N = 4n, PΓ(x1, . . . , x2n, y1, . . . , y2n) = d2n(X,Y ).
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The proof of Domokos

Let a1, . . . , a2n, b1, . . . , b2n ∈Mn(K). Consider the 2× 2 block matrices

Ai =

(
0 ai
0 0

)
, Bi =

(
0 0
bi 0

)
∈M2n(K), i = 1, . . . , 2n.

By the Amitsur-Levitzki theorem for M2n(K)

s4n(A1, B1, . . . , A2n, B2n) =

(
0 d2n(A,B)

d2n(B,A) 0

)
=

(
0 0
0 0

)
.

Hence d2n(X,Y ) = 0 is a polynomial identity for Mn(K).
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THANK YOU VERY MUCH
FOR YOUR ATTENTION!
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